Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cells ; 12(7)2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048096

RESUMO

Dendritic cells (DCs) vaccine is a potential tool for oncoimmunotherapy. However, it is known that this therapeutic strategy has failed in solid tumors, making the development of immunoadjuvants highly relevant. Recently, we demonstrated that Phoneutria nigriventer spider venom (PnV) components are cytotoxic to glioblastoma (GB) and activate macrophages for an antitumor profile. However, the effects of these molecules on the adaptive immune response have not yet been evaluated. This work aimed to test PnV and its purified fractions in DCs in vitro. For this purpose, bone marrow precursors were collected from male C57BL6 mice, differentiated into DCs and treated with venom or PnV-isolated fractions (F1-molecules < 3 kDa, F2-3 to 10 kDa and F3->10 kDa), with or without costimulation with human GB lysate. The results showed that mainly F1 was able to activate DCs, increasing the activation-dependent surface marker (CD86) and cytokine release (IL-1ß, TNF-α), in addition to inducing a typical morphology of mature DCs. From the F1 purification, a molecule named LW9 was the most effective, and mass spectrometry showed it to be a peptide. The present findings suggest that this molecule could be an immunoadjuvant with possible application in DC vaccines for the treatment of GB.


Assuntos
Glioblastoma , Venenos de Aranha , Camundongos , Masculino , Humanos , Animais , Glioblastoma/terapia , Venenos de Aranha/farmacologia , Camundongos Endogâmicos C57BL , Diferenciação Celular , Células Dendríticas
2.
Front Mol Biosci ; 9: 752668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359607

RESUMO

Glioblastomas (GBs) are responsible for a higher mortality rate among gliomas, corresponding to more than 50% of them and representing a challenge in terms of therapy and prognosis. Peptide-based antineoplastic therapy is a vast and promising field, and these molecules are one of the main classes present in spider venoms. Recently, our research group demonstrated the cytotoxic effects of Phoneutria nigriventer spider venom (PnV) in GBs. The present study aimed to select the purified PnV-components with potential antineoplastic effects, as well as to compare different metabolic conditions. Human GB (NG97) cells were treated with the PnV fractions: F1 (less than 3 kDa), F2 (between 3 and 10 kDa), and F3 (greater than 10 kDa). After treatments, viability (MTT), proliferation (CFSE), death (Annexin V/propidium iodide-PI), and cell cycle (PI) assays were performed. The F1 and F2 fractions in acute periods (1 and 5 h) and low concentrations (0.1 and 1 µg/ml) showed more relevant effects and were repurified in subfractions (SF1-SF11); from these, SF3 and SF4 showed the most significant effects. The previous inhibition of mTOR by rapamycin had a synergistic effect with SFs, reducing cell viability even more significantly than the untreated control. Taken together, the results point to components present in SF3 and SF4 as potential prototypes for the development of new drugs for GB treatment and stimulate studies to use these compounds in combination therapy with a rapamycin-like activity. Future studies will be conducted to characterize, synthesize the molecules, and to evaluate the efficacy and safety in preclinical models.

3.
Peptides ; 146: 170648, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537257

RESUMO

Peptides are molecules that have emerged as crucial candidates for the development of anticancer drugs. Spider venoms are a rich source of peptides (venom peptides - VPs) with biological effects. VPs have been tested as adjuvants in the activation of cells of the immune system with the aim of improving immunotherapies for the treatment of neoplasms. In the present study, the effects of SNX-482, a peptide from the African tarantula Hysterocrates gigas, on macrophages were described. The results showed that the peptide activated M0-macrophages, increasing costimulatory molecules (CD40, CD68, CD80, CD83, CD86) involved in antigen presentation, and also augmenting the checkpoint molecules PD-L1, CTLA-4 and FAS-L; these effects were not concentration-dependent. SNX-482 also increased the release of IL-23 and upregulated the expression of ccr4, ifn-g, gzmb and pdcd1, genes important for the anticancer response. The pretreatment of macrophages with the peptide did not interfere in the modulation of T cells, and macrophages previously polarized to M1 and M2 profile did not respond to SNX-482. These findings represent the expansion of knowledge about the use of VPs in drug discovery, pointing to a potential new candidate for anticancer immunotherapy. Considering that most immunotherapies target the adaptive system, the modulation of macrophages (an innate immune cell) by SNX-482 is especially relevant.


Assuntos
Adjuvantes Imunológicos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Venenos de Aranha/química , Aranhas/química , Animais , Antígenos CD/imunologia , Linhagem Celular Tumoral , Polaridade Celular , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Ativação de Macrófagos/imunologia , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Venenos de Aranha/farmacologia
4.
Front Immunol ; 12: 671511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054847

RESUMO

Multiple Sclerosis (MS) is a neuroinflammatory and chronic Central Nervous System (CNS) disease that affects millions of people worldwide. The search for more promising drugs for the treatment of MS has led to studies on Sildenafil, a phosphodiesterase type 5 Inhibitor (PDE5I) that has been shown to possess neuroprotective effects in the Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. We have previously shown that Sildenafil improves the clinical score of EAE mice via modulation of apoptotic pathways, but other signaling pathways were not previously covered. Therefore, the aim of the present study was to further investigate the effects of Sildenafil treatment on autophagy and nitrosative stress signaling pathways in EAE. 24 female C57BL/6 mice were divided into the following groups: (A) Control - received only water; (B) EAE - EAE untreated mice; (C) SILD - EAE mice treated with 25mg/kg of Sildenafil s.c. The results showed that EAE mice presented a pro-nitrosative profile characterized by high tissue nitrite levels, lowered levels of p-eNOS and high levels of iNOS. Furthermore, decreased levels of LC3, beclin-1 and ATG5, suggests impaired autophagy, and decreased levels of AMPK in the spinal cord were also detected in EAE mice. Surprisingly, treatment with Sildenafil inhibited nitrosative stress and augmented the levels of LC3, beclin-1, ATG5, p-CREB and BDNF and decreased mTOR levels, as well as augmented p-AMPK. In conclusion, we propose that Sildenafil alleviates EAE by activating autophagy via the eNOS-NO-AMPK-mTOR-LC3-beclin1-ATG5 and eNOS-NO-AMPK-mTOR-CREB-BDNF pathways in the spinal cord.


Assuntos
Autofagia/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Inibidores da Fosfodiesterase 5/farmacologia , Citrato de Sildenafila/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Estresse Nitrosativo/efeitos dos fármacos
5.
J Biochem ; 170(1): 51-68, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33599263

RESUMO

Immunomodulation has been considered an important approach in the treatment of malignant tumours. However, the modulation of innate immune cells remains an underexplored tool. Studies from our group demonstrated that the Phoneutria nigriventer spider venom (PnV) administration increased the infiltration of macrophage in glioblastoma, in addition to decreasing the tumour size in a preclinical model. The hypothesis that PnV would be modulating the innate immune system led us to the main objective of the present study: to elucidate the effects of PnV and its purified fractions on cultured macrophages. Results showed that PnV and the three fractions activated macrophages differentiated from bone marrow precursors. Further purification generated 23 subfractions named low weight (LW-1 to LW-12) and high weight (HW-1 to HW-11). LW-9 presented the best immunomodulatory effect. Treated cells were more phagocytic, migrated more, showed an activated morphological profile and induced an increased cytotoxic effect of macrophages on tumour cells. However, while M1-controls (LPS) increased IL-10, TNF-alpha and IL-6 release, PnV, fractions and subfractions did not alter any cytokine, with the exception of LW-9 that stimulated IL-10 production. These findings suggest that molecules present in LW-9 have the potential to be used as immunoadjuvants in the treatment of cancer.


Assuntos
Adjuvantes Imunológicos/farmacologia , Glioblastoma/terapia , Imunoterapia , Macrófagos/efeitos dos fármacos , Venenos de Aranha/farmacologia , Animais , Células Cultivadas , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos
6.
Microb Pathog ; 150: 104696, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33359357

RESUMO

The DC subsets that express αE integrin (CD103) have been described to exert antagonistic functions, driving T cells towards either an inflammatory (Th1/Th17) or immunosuppressive phenotype (regulatory T cells - Treg). These functions depend on the tissue they reside and microenvironment factors or stimuli that this Antigen-presenting cell (APC) subpopulation receive. In this regard, immunoregulatory phenotype has been described in small subsets of CD103+ DCs from lung and intestinal mucosa. The function of this APC subpopulation in pulmonary Paracoccidioides brasiliensis infection is poorly described. Here, we showed that lung CD103+ DCs contribute to Treg differentiation in a pulmonary P. brasiliensis infection model, which was attributed to downregulation of costimulatory molecules analyzed in these APC subtypes 21 days post-infection. Overall, this data suggests that P. brasiliensis infection caused an immunosuppression that has also been observed in patients with the most severe form of Paracoccidioidomycosis (PCM) - a sickness caused by this fungus genus. Furthermore, these results open new perspectives for knowledge of the mechanisms that underlie the higher percentage of Treg cells found in peripheral blood of PCM patients.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Animais , Antígenos CD , Diferenciação Celular , Células Dendríticas , Humanos , Cadeias alfa de Integrinas , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores
7.
Cancer Cell Int ; 20(1): 576, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33327966

RESUMO

BACKGROUND: Glioblastoma (GB) cells have the ability to migrate and infiltrate the normal parenchyma, leading to the formation of recurrent tumors often adjacent to the surgical extraction site. We recently showed that Phoneutria nigriventer spider venom (PnV) has anticancer effects mainly on the migration of human GB cell lines (NG97 and U-251). The present work aimed to investigate the effects of isolated components from the venom on migration, invasiveness, morphology and adhesion of GB cells, also evaluating RhoA-ROCK signaling and Na+/K+-ATPase ß2 (AMOG) involvement. METHODS: Human (NG97) GB cells were treated with twelve subfractions (SFs-obtained by HPLC from PnV). Migration and invasion were evaluated by scratch wound healing and transwell assays, respectively. Cell morphology and actin cytoskeleton were shown by GFAP and phalloidin labeling. The assay with fibronectin coated well plate was made to evaluate cell adhesion. Western blotting demonstrated ROCK and AMOG levels and a ROCK inhibitor was used to verify the involvement of this pathway. Values were analyzed by the GraphPad Prism software package and the level of significance was determinate using one-way analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test. RESULTS: Two (SF1 and SF11) of twelve SFs, decreased migration and invasion compared to untreated control cells. Both SFs also altered actin cytoskeleton, changed cell morphology and reduced adhesion. SF1 and SF11 increased ROCK expression and the inhibition of this protein abolished the effects of both subfractions on migration, morphology and adhesion (but not on invasion). SF11 also increased Na+/K+-ATPase ß2. CONCLUSION: All components of the venom were evaluated and two SFs were able to impair human glioblastoma cells. The RhoA effector, ROCK, was shown to be involved in the mechanisms of both PnV components. It is possible that AMOG mediates the effect of SF11 on the invasion. Further investigations to isolate and biochemically characterize the molecules are underway.

8.
Immunobiology ; 225(4): 151963, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32747019

RESUMO

Studies that show an overview of the peripheral immune response in a model of Paracoccidioides brasiliensis (Pb) infection in females are scarce in the literature. We sought to characterize the innate and adaptive immune responses in female C57BL/6 mice infected with Pb through two distinct routes of administration, intranasal and intravenous. In addition to the lung, P. brasiliensis yeast cells were observed in liver and brain tissues of females infected intravenously. To our knowledge, our study is the first to prove the presence of this pathogenic fungus in the cerebral cortex of female mice. During the initial stages of infection, augmented expression of both MHCII and CD86 was observed on the surface of CD11c+ pulmonary antigen-presenting cells (APCs) in intranasally and intravenously infected females. However, CD40 expression was downregulated in these cells. Concomitantly with increasing serum IL-10 levels, we noted that splenic dendritic cells (DCs) from both intravenously- and intranasally-infected female mice had acquired an immature phenotype. Further, increased T regulatory cell counts were observed in female mice infected via both routes, along with an increase in the infiltration of IL-10-producing CD8+ T cells into the lungs. Moreover, we noted that P. brasiliensis infection resulted in enhanced IL-10 production - by CD11c+ APCs in the lung tissue - and induction of Th17 polarization. Taken together, our results suggest that P. brasiliensis could modulates the immune response in female mice by influencing the balance between regulatory T cells (Tregs) and Th17 polarization.


Assuntos
Interações Hospedeiro-Patógeno , Contagem de Linfócitos , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/microbiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Citocinas/metabolismo , Feminino , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/metabolismo , Camundongos , Paracoccidioidomicose/transmissão , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
9.
Int Immunopharmacol ; 85: 106581, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32442900

RESUMO

Multiple sclerosis (MS) is a chronic immuno-inflammatory disease of the central nervous system characterized by demyelination and axonal damage. Cognitive changes are common in individuals with MS since inflammatory molecules secreted by microglia interfere with the physiological mechanisms of synaptic plasticity. According to previous data, inhibition of PDE5 promotes the accumulation of cGMP, which inhibits neuroinflammation and seems to improve synaptic plasticity and memory. The present study aimed to evaluate the effect of sildenafil on the signaling pathways of neuroinflammation and synaptic plasticity in experimental autoimmune encephalomyelitis (EAE). C57BL/6 mice were divided into three experimental groups (n = 10/group): (a) Control; (b) EAE; (c) EAE + sild (25 mg/kg/21 days). Sildenafil was able to delay the onset and attenuate the severity of the clinical symptoms of EAE. The drug also reduced the infiltration of CD4+ T lymphocytes and their respective IL-17 and TNF-α cytokines. Moreover, sildenafil reduced neuroinflammation in the hippocampus (assessed by the reduction of inflammatory markers IL-1ß, pIKBα and pNFkB and reactive gliosis, as well as elevating the inhibitory cytokines TGF-ß and IL-10). Moreover, sildenafil induced increased levels of NeuN, BDNF and pCREB, protein kinases (PKA, PKG, and pERK) and synaptophysin, and modulated the expression of the glutamate receptors AMPA and NMDA. The present findings demonstrated that sildenafil has therapeutic potential for cognitive deficit associated with multiple sclerosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Citrato de Sildenafila/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Citrato de Sildenafila/farmacologia
10.
Sci Rep ; 10(1): 5876, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246025

RESUMO

Molecules from animal venoms are promising candidates for the development of new drugs. Previous in vitro studies have shown that the venom of the spider Phoneutria nigriventer (PnV) is a potential source of antineoplastic components with activity in glioblastoma (GB) cell lines. In the present work, the effects of PnV on tumor development were established in vivo using a xenogeneic model. Human GB (NG97, the most responsive line in the previous study) cells were inoculated (s.c.) on the back of RAG-/- mice. PnV (100 µg/Kg) was administrated every 48 h (i.p.) for 14 days and several endpoints were evaluated: tumor growth and metabolism (by microPET/CT, using 18F-FDG), tumor weight and volume, histopathology, blood analysis, percentage and profile of macrophages, neutrophils and NK cells isolated from the spleen (by flow cytometry) and the presence of macrophages (Iba-1 positive) within/surrounding the tumor. The effect of venom was also evaluated on macrophages in vitro. Tumors from PnV-treated animals were smaller and did not uptake detectable amounts of 18F-FDG, compared to control (untreated). PnV-tumor was necrotic, lacking the histopathological characteristics typical of GB. Since in classic chemotherapies it is observed a decrease in immune response, methotrexate (MTX) was used only to compare the PnV effects on innate immune cells with a highly immunosuppressive antineoplastic drug. The venom increased monocytes, neutrophils and NK cells, and this effect was the opposite of that observed in the animals treated with MTX. PnV increased the number of macrophages in the tumor, while did not increase in the spleen, suggesting that PnV-activated macrophages were led preferentially to the tumor. Macrophages were activated in vitro by the venom, becoming more phagocytic; these results confirm that this cell is a target of PnV components. Spleen and in vitro PnV-activated macrophages were different of M1, since they did not produce pro- and anti-inflammatory cytokines. Studies in progress are selecting the venom molecules with antitumor and immunomodulatory effects and trying to better understand their mechanisms. The identification, optimization and synthesis of antineoplastic drugs from PnV molecules may lead to a new multitarget chemotherapy. Glioblastoma is associated with high morbidity and mortality; therefore, research to develop new treatments has great social relevance. Natural products and their derivatives represent over one-third of all new molecular entities approved by FDA. However, arthropod venoms are underexploited, although they are a rich source of new molecules. A recent in vitro screening of the Phoneutria nigriventer spider venom (PnV) antitumor effects by our group has shown that the venom significantly affected glioblastoma cell lines. Therefore, it would be relevant to establish the effects of PnV on tumor development in vivo, considering the complex neoplastic microenvironment. The venom was effective at impairing tumor development in murine xenogeneic model, activating the innate immune response and increasing tumor infiltrating macrophages. In addition, PnV activated macrophages in vitro for a different profile of M1. These activated PnV-macrophages have potential to fight the tumor without promoting tumorigenesis. Studies in progress are selecting the venom molecules with antitumor and immunomodulatory effects and trying to better understand their mechanisms. We aim to synthesize and carry out a formulation with these antineoplastic molecules for clinical trials. Spider venom biomolecules induced smaller and necrotic xenogeneic GB; spider venom activated the innate immune system; venom increased blood monocytes and the migration of macrophages to the tumor; activated PnV-macrophages have a profile different of M1 and have a potential to fight the tumor without promote tumorigenesis.


Assuntos
Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Venenos de Aranha/uso terapêutico , Animais , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Glioblastoma/imunologia , Humanos , Imunidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Aranhas , Microtomografia por Raio-X
11.
Neuroimmunomodulation ; 27(1): 28-37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155637

RESUMO

BACKGROUND: Previous work revealed the existence of a severe thymic atrophy with massive loss of immature CD4+CD8+ thymocytes in animals developing insulin-dependent diabetes, chemically induced by alloxan. Furthermore, the intrathymic expression of chemokines, such as CXCL12, is changed in these animals, suggesting that cell migration-related patterns may be altered. One molecular interaction involved in normal thymocyte migration is that mediated by soluble semaphorin-3A and its cognate receptor neuropilin-1. OBJECTIVES: We investigated herein the expression and role of semaphorin-3A in the migratory responses of thymocytes from alloxan-induced diabetic mice. We characterized semaphorin-3A and its receptor, neuropilin-1, in thymuses from control and diabetic mice as well as semaphorin-3A-dependent migration of developing thymocytes in both control and diabetic animals. METHODS: Diabetes was chemically induced after a single injection of alloxan in young adult BALB/c mice. Thymocytes were excised from control and diabetic individuals and subjected to cytofluorometry for simultaneous detection of semaphorin-3A or neuropilin-1 in CD4/CD8-defined subsets. Cell migration in response to semaphorin-3A was performed using cell migration transwell chambers. RESULTS: Confirming previous data, we observed a severe decrease in the total numbers of thymocytes in diabetic mice, which comprised alterations in both immature (double-negative subpopulations) and mature CD4/CD8-defined thymocyte subsets. These were accompanied by a decrease in the absolute numbers of semaphorin-3A-bearing thymocytes, comprising CD4-CD8-, CD4+CD8+, and CD4-CD8+ cells. Additionally, immature CD4-CD8- and CD4+CD8+ developing T cells exhibited a decrease in the membrane density of semaphorin-3A. The relative and absolute numbers of neuropilin-1-positive thymocytes were also decreased in diabetic mouse thymocytes compared to controls, as seen in CD4-CD8-, CD4+CD8+, and CD4-CD8+ cell subpopulations. Functionally, we observed a decrease in the chemorepulsive role of semaphorin-3A, as revealed by transwell migration chambers. Such an effect was seen in all immature and mature thymocyte subsets. CONCLUSIONS: Taken together, our data clearly unravel a disruption in the normal cell migration pattern of developing thymocytes following chemically induced insulin-dependent diabetes, as ascertained by the altered migratory response to sempahorin-3A. In conceptual terms, it is plausible to think that such disturbances in the migration pattern of thymocytes from these diabetic animals may exert an impact in the cell-mediated immune response of these mice.


Assuntos
Movimento Celular/imunologia , Diabetes Mellitus Experimental/imunologia , Semaforina-3A/metabolismo , Timócitos/patologia , Animais , Diabetes Mellitus Tipo 1/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Timócitos/metabolismo
12.
J Cell Physiol ; 234(2): 1398-1415, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30078202

RESUMO

The mechanisms of cancer involve changes in multiple biological pathways. Multitarget molecules, which are components of animal venoms, are therefore a potential strategy for treating tumors. The objective of this study was to screen the effects of Phoneutria nigriventer spider venom (PnV) on tumor cell lines. Cultured human glioma (NG97), glioblastoma (U-251) and cervix adenocarcinoma (HeLa) cells, and nontumor mouse fibroblasts (L929) were treated with low (14 µg/ml) and high (280 µg/ml) concentrations of PnV, and analyzed through assays for cell viability (thiazolyl blue tetrazolium blue), proliferation (carboxyfluorescein succinimidyl ester), death (annexin V/propidium iodide [Pi]), the cell cycle (Pi), and migration (wound healing and transwell assay). The venom decreased the viability of U-251 cells, primarily by inducing cell death, and reduced the viability of NG97 cells, primarily by inhibiting the cell cycle. The migration of all the tumor cell lines was delayed when treated with venom. The venom significantly affected all the tumor cell lines studied, with no cytotoxic effect on normal cells (L929), although the nonglial tumor cell (HeLa) was less sensitive to PnV. The results of the current study suggest that PnV may be composed of peptides that are highly specific for the multiple targets involved in the hallmarks of cancer. Experiments are underway to identify these molecules.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Venenos de Aranha/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glioma/patologia , Células HeLa , Humanos , Masculino , Camundongos , Necrose , Invasividade Neoplásica , Neoplasias do Colo do Útero/patologia
13.
J Cell Physiol, v. 234, n. 2, p. 1398-1415, fev. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2616

RESUMO

The mechanisms of cancer involve changes in multiple biological pathways. Multitarget molecules, which are components of animal venoms, are therefore a potential strategy for treating tumors. The objective of this study was to screen the effects of Phoneutria nigriventer spider venom (PnV) on tumor cell lines. Cultured human glioma (NG97), glioblastoma (U-251) and cervix adenocarcinoma (HeLa) cells, and nontumor mouse fibroblasts (L929) were treated with low (14?µg/ml) and high (280?µg/ml) concentrations of PnV, and analyzed through assays for cell viability (thiazolyl blue tetrazolium blue), proliferation (carboxyfluorescein succinimidyl ester), death (annexin V/propidium iodide [Pi]), the cell cycle (Pi), and migration (wound healing and transwell assay). The venom decreased the viability of U-251 cells, primarily by inducing cell death, and reduced the viability of NG97 cells, primarily by inhibiting the cell cycle. The migration of all the tumor cell lines was delayed when treated with venom. The venom significantly affected all the tumor cell lines studied, with no cytotoxic effect on normal cells (L929), although the nonglial tumor cell (HeLa) was less sensitive to PnV. The results of the current study suggest that PnV may be composed of peptides that are highly specific for the multiple targets involved in the hallmarks of cancer. Experiments are underway to identify these molecules.

14.
J. Cell. Physiol. ; 234(2): p. 1398-1415, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15702

RESUMO

The mechanisms of cancer involve changes in multiple biological pathways. Multitarget molecules, which are components of animal venoms, are therefore a potential strategy for treating tumors. The objective of this study was to screen the effects of Phoneutria nigriventer spider venom (PnV) on tumor cell lines. Cultured human glioma (NG97), glioblastoma (U-251) and cervix adenocarcinoma (HeLa) cells, and nontumor mouse fibroblasts (L929) were treated with low (14?µg/ml) and high (280?µg/ml) concentrations of PnV, and analyzed through assays for cell viability (thiazolyl blue tetrazolium blue), proliferation (carboxyfluorescein succinimidyl ester), death (annexin V/propidium iodide [Pi]), the cell cycle (Pi), and migration (wound healing and transwell assay). The venom decreased the viability of U-251 cells, primarily by inducing cell death, and reduced the viability of NG97 cells, primarily by inhibiting the cell cycle. The migration of all the tumor cell lines was delayed when treated with venom. The venom significantly affected all the tumor cell lines studied, with no cytotoxic effect on normal cells (L929), although the nonglial tumor cell (HeLa) was less sensitive to PnV. The results of the current study suggest that PnV may be composed of peptides that are highly specific for the multiple targets involved in the hallmarks of cancer. Experiments are underway to identify these molecules.

15.
Int Immunopharmacol ; 63: 84-93, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30075432

RESUMO

Dendritic cells (DCs) are antigen-presenting cells with the ability to activate naïve T cells and direct the adaptive cellular immune response toward a specific profile. This is important, as different pathogens demand specific "profiles" of immune responses for their elimination. Such a goal is achieved depending on the maturation/activation status of DCs by the time of antigen presentation to T cells. Notwithstanding this, recent studies have shown that DCs alter their metabolic program to accommodate the functional changes in gene expression and protein synthesis that follow antigen recognition. In this review, we aim to summarize the data in the literature regarding the metabolic pathways involved with DC phenotypes and their functions.


Assuntos
Células Dendríticas/metabolismo , Animais , Células Dendríticas/imunologia , Humanos , Transdução de Sinais
16.
J Neuroimmunol ; 321: 125-137, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29957383

RESUMO

Apoptosis is one form of cell death that is intimately related to health and pathological conditions. In most neuroinflammatory and/or neurodegenerative diseases, apoptosis is associated with disease development and pathology and inhibition of this process leads to considerable amelioration. It is becoming evident that apoptosis also participates in the pathogenesis of Multiple Sclerosis (MS) and its animal model, Experimental Autoimmune Encephalomyelitis (EAE). Drugs such as Sildenafil, a Phosphodiesterase type 5 Inhibitor (PDE5I), have proven to be neuroprotective in MS models. However, it is not known whether Sildenafil is able to modulate cell death, specifically apoptosis, in EAE mice. Therefore, the aim of this study was to determine the effects of Sildenafil on extrinsic and intrinsic apoptosis pathways in the spinal cord of C57BL/6 mice with EAE. TUNEL analysis showed that EAE mice had elevated number of TUNEL+ cells and that treatment with Sildenafil led to reduced number of dying cells, indicating that Sildenafil was able to inhibit cell death. We observed that both extrinsic and intrinsic pathways of apoptosis were governing the dynamics of EAE progression. We showed that in EAE mice there were increased levels of extrinsic (Caspase-8, -3, TNF-α, FADD) and intrinsic (Caspase-9, Bax and Cytochrome C) apoptosis markers. Bcl-2, an anti-apoptotic protein, was downregulated in EAE mice. We also demonstrated that EAE mice had increased levels of non-caspase mediators of cell survival/cell death (p-IκBα and p-MAPK-p38). Besides, EAE mice presented augmented demyelination. Nevertheless, this is the first research to demonstrate that Sildenafil, when administered concomitant to disease induction, modulated the expression of pro- and anti-apoptotic proteins of the extrinsic and intrinsic pathways, as well as diminished the expression of non-caspase mediators and promoted remyelination in the spinal cord, indicating neuroprotective effects. Thus, the present study demonstrated that Sildenafil inhibits apoptosis by two distinct, although interconnected, mechanisms: directly by modulating caspase expression (through extrinsic and intrinsic pathways) and indirectly by modulating the expression of molecules involved in cell death and/or cell survival.


Assuntos
Apoptose/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Citrato de Sildenafila/uso terapêutico , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Animais , Apoptose/fisiologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico , Citrato de Sildenafila/farmacologia , Medula Espinal/patologia
17.
Eur J Immunol ; 48(7): 1228-1234, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29572810

RESUMO

MS and EAE are T cell-driven autoimmune diseases of the CNS where IL-17-producing Th17 cells promote damage and are pathogenic. Conversely, tolerogenic DCs induce Treg cells and suppress Th17 cells. Chloroquine (CQ) suppresses EAE through the modulation of DCs by unknown mechanisms. Here, we show that STAT 1 is necessary for CQ-induced tolerogenic DCs (tolDCs) to efficiently suppress EAE. We observed that CQ induces phosphorylation of STAT1 in DCs in vivo and in vitro. Genetic blockage of STAT1 abrogated the suppressive activity of CQ-treated DCs. Opposed to its WT counterparts, CQ-treated STAT1-/- BMDCs were unable to suppress Th17 cells and increased EAE severity. Our findings show that STAT1 is a major signaling pathway in CQ-induced tolDCs and may shed light on new therapeutic avenues for the induction of tolDCs in autoimmune diseases such as MS.


Assuntos
Cloroquina/metabolismo , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Neutrófilos/imunologia , Fator de Transcrição STAT1/metabolismo , Células Th17/imunologia , Animais , Autoantígenos/imunologia , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Fator de Transcrição STAT1/genética , Transdução de Sinais
18.
FASEB J ; 32(8): 4470-4481, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29558201

RESUMO

Cerebral malaria (CM) is a multifactorial syndrome involving an exacerbated proinflammatory status, endothelial cell activation, coagulopathy, hypoxia, and accumulation of leukocytes and parasites in the brain microvasculature. Despite significant improvements in malaria control, 15% of mortality is still observed in CM cases, and 25% of survivors develop neurologic sequelae for life-even after appropriate antimalarial therapy. A treatment that ameliorates CM clinical signs, resulting in complete healing, is urgently needed. Previously, we showed a hyperbaric oxygen (HBO)-protective effect against experimental CM. Here, we provide molecular evidence that HBO targets brain endothelial cells by decreasing their activation and inhibits parasite and leukocyte accumulation, thus improving cerebral microcirculatory blood flow. HBO treatment increased the expression of aryl hydrocarbon receptor over hypoxia-inducible factor 1-α (HIF-1α), an oxygen-sensitive cytosolic receptor, along with decreased indoleamine 2,3-dioxygenase 1 expression and kynurenine levels. Moreover, ablation of HIF-1α expression in endothelial cells in mice conferred protection against CM and improved survival. We propose that HBO should be pursued as an adjunctive therapy in CM patients to prolong survival and diminish deleterious proinflammatory reaction. Furthermore, our data support the use of HBO in therapeutic strategies to improve outcomes of non-CM disorders affecting the brain.-Bastos, M. F., Kayano, A. C. A. V., Silva-Filho, J. L., Dos-Santos, J. C. K., Judice, C., Blanco, Y. C., Shryock, N., Sercundes, M. K., Ortolan, L. S., Francelin, C., Leite, J. A., Oliveira, R., Elias, R. M., Câmara, N. O. S., Lopes, S. C. P., Albrecht, L., Farias, A. S., Vicente, C. P., Werneck, C. C., Giorgio, S., Verinaud, L., Epiphanio, S., Marinho, C. R. F., Lalwani, P., Amino, R., Aliberti, J., Costa, F. T. M. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen as mechanisms involved in protection against experimental cerebral malaria.


Assuntos
Encéfalo/metabolismo , Hipóxia/metabolismo , Cinurenina/metabolismo , Malária Cerebral/metabolismo , Oxigênio/metabolismo , Animais , Circulação Cerebrovascular/fisiologia , Células Endoteliais/metabolismo , Feminino , Oxigenoterapia Hiperbárica/métodos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação/fisiologia
19.
Immunol Lett ; 196: 91-102, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427742

RESUMO

Dendritic cells (DCs) are essential players in the activation of T cells and in the development of adaptive immune response towards invading pathogens. Upon antigen (Ag) recognition of Pathogen Associated Molecular Patterns (PAMPs) by their receptors (PRRs), DCs are activated and acquire an inflammatory profile. DCs have the ability to direct the profile of helper T (Th) cells towards Th1, Th2, Th17, Th9 and regulatory (Treg) cells. Each subset of Th cells presents a unique gene expression signature and is endowed with the ability to conduct or suppress effector cells in inflammation. Pathogens target DCs during infection. Many studies demonstrated that antigens and molecules derived from pathogens have the ability to dampen DC maturation and activation, leading these cells to a permissive state or tolerogenic profile (tolDCs). Although tolDCs may represent a hindrance in infection control, they could be positively used to modulate inflammatory disorders, such as autoimmune diseases. In this review, we focus on discussing findings that use pathogen-antigen modulated DCs and tolDCs in prophylactics and therapeutics approaches for vaccination against infectious diseases or inflammatory disorders.


Assuntos
Imunidade Adaptativa/imunologia , Antígenos/imunologia , Células Dendríticas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Humanos , Tolerância Imunológica/imunologia , Inflamação/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/citologia
20.
Lasers Med Sci ; 32(4): 921-930, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28349345

RESUMO

The antifungal drug therapy often employed to treat paracoccidiodomycosis (PCM), an important neglected fungal systemic infection, leads to offensive adverse effects, besides being very long-lasting. In addition, PCM compromises the oral health of patients by leading to oral lesions that are very painful and disabling. In that way, photodynamic therapy (PDT) arises as a new promising adjuvant treatment for inactivating Paracoccidioides brasiliensis (Pb), the responsible fungus for PCM, and also for helping the patients to deal with such debilitating oral lesions. PDT has been linked to an improved microbial killing, also presenting the advantage of not inducing immediate microbial resistance such as drugs. For the present study, we investigated the generation of reactive oxygen species (ROS) by using the fluorescent probes hydroxyphenyl fluorescein (HPF) and aminophenyl fluorescein (APF) after toluidine blue (TBO-37.5 mg/L)-mediated PDT (660 nm, 40 mW, and 0.04 cm2 spot area) and the action of TBO-PDT upon Pb cultures grown for 7 or 15 days in semisolid Fava Netto's culture medium; we also targeted oral PCM manifestations by reporting the first clinical cases (three patients) to receive topic PDT for such purpose. We were able to show a significant generation of hydroxyl radicals and hypochlorite after TBO-PDT with doses around 90 J/cm2; such ROS generation was particularly useful to attack and inactivate Pb colonies at 7 and 15 days. All three patients reported herein related an immediate relief when it came to pain, mouth opening, and also the ability to chew and swallow. As extracted from our clinical results, which are in fact based on in vitro outcomes, TBO-PDT is a very safe, inexpensive, and promising therapy for the oral manifestations of PCM.


Assuntos
Viabilidade Microbiana/efeitos dos fármacos , Doenças da Boca/tratamento farmacológico , Doenças da Boca/microbiologia , Paracoccidioides/efeitos da radiação , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/microbiologia , Fotoquimioterapia , Cloreto de Tolônio/uso terapêutico , Adulto , Antifúngicos/farmacologia , Corantes Fluorescentes/química , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Doenças da Boca/patologia , Paracoccidioides/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Tolônio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...